[ad_1]
Московские специалисты создали методологию по подготовке медицинских наборов данных для тестирования нейросетей по анализу лучевых исследований. С помощью обезличенных рентгенологических снимков с признаками заболеваний умные алгоритмы учатся самостоятельно находить патологии. Рекомендации предназначены для врачей любых специальностей, которые организуют и проводят разметку медицинских наборов данных. Подготовленные подходы позволят повсеместно унифицировать разработку датасетов, обеспечить их качество, а также ускорить внедрение искусственного интеллекта в медицине для анализа исследований пациентов.
Безопасность и качество работы нейросетей напрямую обусловлена наборами данных, поэтому процесс их формирования требует понятной методологии для специалистов. Эти методические рекомендации стали результатом объединения мировых практик и собственного опыта Центра диагностики и телемедицины Депздрава по внедрению сервисов искусственного интеллекта.
Методология разработана и апробирована в ходе выполнения московского эксперимента по использованию технологий в области компьютерного зрения для анализа медицинских изображений и научно-исследовательской работы «Научное обоснование методологии применения и способов оценки качества (искусственного интеллекта) в диагностике». Она содержит описание практических подходов при планировании и создании наборов данных, необходимых для апробации и применения технологий искусственного интеллекта в здравоохранении.
Московский эксперимент – крупнейшее в мире научное исследование медицинского искусственного интеллекта. Сегодня в эксперименте более 40 сервисов по 19 клиническим направлениям, почти за три года нейросети проанализировали уже более 8,5 миллиона изображений, полученных при помощи лучевых методов исследований пациентов медицинских учреждений столицы.
Подпишитесь на каналы Let AI be в Telegram и «ВКонтакте» — оставайтесь в курсе главных новостей!
[ad_2]
Источник